16 de feb. de 2011

Tipos de Geometría

Entre los tipos de geometría más destacables se encuentran:
Geometría euclidiana es aquella que estudia las propiedades del plano y el espacio tridimensional. En ocasiones los matemáticos usan el término para englobar geometrías de dimensiones superiores con propiedades similares. Sin embargo, con frecuencia, geometría euclidiana es sinónimo de geometría plana.
Geometría plana La geometría plana es una parte de la geometría que trata de        aquellos elementos cuyos puntos están contenidos en un plano. La geometría plana está considerada parte de la geometría euclidiana, pues ésta estudia los elementos geométricos a partir de dos dimensiones.
 Geometría espacial La geometría espacial o geometría del espacio es la rama de la geometría que se ocupa de las propiedades y medidas de las figuras geométricas en el espacio tridimensional o espacio euclídeo. Entre estas figuras, también llamadas sólidos, se encuentran el cono, el cubo, el cilindro, la pirámide, la esfera, el prisma, los poliedros regulares (los sólidos platónicos, convexos, y los sólidos de Kepler-Poinsot, no convexos) y otros poliedros.

Geometría no euclidiana a cualquier forma de geometría cuyos postulados y propiedades difieren en algún punto de los establecidos por Euclides en su tratado Elementos. No existe un sólo tipo de geometría no euclídea, sino muchos, aunque si se restringe la discusión a espacios homogéneos, en los que la curvatura del espacio la misma en cada punto, en los que los puntos del espacio son indistinguibles pueden distinguirse tres tipos de geometrías:
  • La geometría euclideana satisface los cinco postulados de Euclides y tiene curvatura cero.
  • La geometría hiperbólica satisface sólo los cuatro primeros postulados de Euclides y tiene curvatura negativa.
  • La geometría elíptica satisface sólo los cuatro primeros postulados de Euclides y tiene curvatura positiva.

Geometría riemanniana es el estudio de las variedades diferenciales con métricas de Riemann; es decir de una aplicación que a cada punto de la variedad, le asigna una forma cuadrática definida positiva en su espacio tangente, aplicación que varía suavemente de un punto a otro. Esto da ideas locales de (entre otras magnitudes) ángulo, longitud de curvas, y volumen. A partir de éstas, pueden obtenerse otras magnitudes por integración de las magnitudes locales.
Geometría analítica al estudio de ciertos objetos geométricos mediante técnicas básicas del análisis matemático y del álgebra en un determinado sistema de coordenadas. Se podría decir que es el desarrollo histórico que comienza con la geometría cartesiana y concluye con la aparición de la geometría diferencial con Carl Friedrich Gauss y más tarde con el desarrollo de la geometría algebraica.
Geometría diferencial es el estudio de la geometría usando las herramientas del análisis matemático. Los objetos de estudio de este campo son las variedades diferenciables (tal y como la topología diferencial) tanto como las nociones de conexión y curvatura (que no se estudia en la topología diferencial).
Geometría proyectiva Se llama geometría proyectiva a una estructura matemática que estudia las incidencias de puntos y rectas sin tener en cuenta la medida. A menudo se usa esta palabra también para hablar de la teoría de la proyección que en realidad se llama geometría proyectiva.
Geometría descriptiva es un conjunto de técnicas de carácter geométrico que permite representar el espacio tridimensional sobre una superficie bidimensional y, por tanto, resolver en dos dimensiones los problemas espaciales garantizando la reversibilidad del proceso a través de la adecuada lectura.
Geometría de incidencia Una geometría es una estructura algebraica con al menos tres tipos de axiomas:
  • ordenación
  • incidencia
  • congruencia
Se llama geometría de incidencia a aquella estructura que carece de axiomas de congruencia. Entre otras cosas, la falta de estos axiomas nos impedirá comparar segmentos y establecer una métrica

Geometría de dimensiones bajas (topología de dimensiones bajas) es el área de la topología y la topología algebraica que estudia problemas geométricos, topológicos y algebraicos que surgen en el estudio de variedades de dimensiones menores que 5, espacios localmente homeomorfos a los espacios euclídeos, desde dimensión cero hasta la cuarta. Sus métodos están inspirados en la geometría y la topología de fenómenos físicos inclusive relativistas y cuánticos e idealizaciones abstractas modernas sobre el concepto de dimensiones: destacadamente y prominentemente, en tres y cuatro dimensiones.
Geometría sagrada La Geometria Sagrada es un concepto planteado por el esoterismo y el gnosticismo. La creencia básica es que existen ciertas relaciones entre la geometría y la matemática y la espiritualidad, Dios y diversos conceptos místicos.

No hay comentarios:

Publicar un comentario en la entrada